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Summary. A comparison is made among various gradient methods for max- 
imizing a function, based on a characterization by Crockett and Chernoff of the 
class of these methods. By defining the "efficiency" of a gradient step in a certain 
way, it becomes easy to compare the efficiencies of different schemes with that of 
Newton's method, which can be regarded as a particular gradient scheme. For 
quadratic functions, it is shown that Newton's method is the most efficient (a con- 
clusion which may be approximately true for nonquadratic functions). For func- 
tions which are not concave (downward), it is shown that the Newton direction 
may be just the opposite of the most desirable one. A simple way of correcting this 
is explained. 

In trying to maximize a function f of the N variables {X1, X2, * XN , iterative 
techniques of the class known as gradient methods have proved of great utility [1], 
[2]. 

For general functions, the analysis usually begins with an expansion of f in a 
Taylor series around some point x (_ {x1, X2, * XNI): 

(1) f(x+ a) =f(x) + Eba- + 2iE ak a2f + 0(a ) s=1 Ox i _ i,= OX iO Xk 

It is assumed that the matrix: 

{-Lik} - {02f/OxiOxk} 

is negative definite, which means that {Lik } itself is positive definite. The direction 
of {6X} is denoted now by {si}, and its length by h. The vector of first derivatives 
If/lxs } is denoted by { gi}. In matrix notation, we then have: 

(2) f(x + hs) -f(x) + hg - 2 h s Ls 

(where the superscript T indicates transposition). 
The arguments which follow are exact for quadratic functions of the form in 

equation (2); they are hence approximately true for nonquadratic functions. For 
the time being, we shall regard f as quadratic. 

It was shown by Crockett and Chernoff* [2] that the direction of maximum 
rate of increase of f, assuming the normalization STGs = 1 (where G is some positive 
definite matrix) is given by: 

(3) s = G-1g/ (gTG- lg) 1/2 

If this direction is then followed until f begins to decrease, the step covered 
will then have, for a quadratic f, the length: 

(4) h = g Ts/sT Ls . 

Received May 18, 1966. 
* See the Appendix for an outline of this analysis. 
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The total change in f due to taking this optimal step in the direction s is then: 

(5) Af, = f (x + hs) -f (x) 
I 

(gTS)/ST Ls 

or, substituting from (3): 

1 (gTG_'g)2 (6) xfG = 2 gG'L0g. 

We wish now to compare this net increase with that due to taking an optimum 
step in the direction given by Newton's method. In this case, it is merely necessary 
to take G = L. We then have: 

(7) AfN = 2 (gT9Lgg) 
We shall now examine the ratio of AfG to AfN, which we shall take to be a meas- 

ure of the efficiency of the procedure: 

'AfG_ (gTG'1g)2 
(8) \AfN (TGT-'LG-1g) (gTL-g) 

Since, in a quadratic form such as (1), there is no a priori connection between 
the first and second derivatives, we may assume that g is an arbitrary vector. Also, 
since G is assumed positive definite, we can find its symmetric positive-definite 
square root, and we may set: 

(9) p = G-1/2 9 

where p is also an arbitrary vector. 
This reduces the formula for p to: 

(lo) (pTp)2 
(PT G1/2 G1/2p (T G1/2 L1G1/2 P 

and, defining A by: 

12 1/2 
(11) A _G-12LG- 

Eq. (10) becomes: 

(12) T(pTp) 
2 

We are now in a position to apply the Kantorovich inequality [3] to p-1: 

(13) 1 <p1 < 4{G (a1/aN) + (aN/al) }1 

where a, and ahN are the smallest and largest eigenvalues of A, respectively. De- 
fining 0 =ON/cla, and rearranging (13), we obtain: 

(14) 40/(1 + 0)2 < p <1, 

Since p is no greater than unity, we see that the Newton step is most efficient 
(if g is arbitrary). For other choices of G than L, it is clear that the condition of A 
(expressed as the ratio 0) [9] is critical. The better conditioned A can be made, the 
more efficient will be the procedure. This result corresponds to that of Crockett 
and Chernoff [2] (expressed in a somewhat different form). 
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One of the major drawbacks to the use of Newton's method, is the fact that, 
unless L is positive definite, there is no assurance of a positive AfN, i.e., the quad- 
ratic form in equation (7) might have a negative value. Clearly, it is necessary to 
replace L in equation (7) in some fashion so as to guarantee an increase in f. The 
alternative is to abandon the Newton method in this case. 

In what follows, we shall present a heuristic argument which indicates that, to 
some extent, the advantages of the Newton step direction may be retained, at the 
same time guaranteeing a rise in f (at least initially). 

We must now assume that f(x + hs) is no longer quadratic in h, but contains 
higher derivatives in its Taylor expansion. This implies a change in the spectrum 
of L as x moves from point to point. However, the directional derivative of f at x 
is still given by (cf. equation (2)): 

(15) f-(df/dh)ho0= gTs 
and the Newton step is given by: 

(16) 8 (_hs) = L-g 

even if L is not positive definite. Hence, we have, combining equations (15) and 
(16): 

(17) = (gTL-1g)/h 

We now analyze this quadratic form by referring all quantities to the normalized 
eigenvectors of L, defined by: 

(18) 14k = Xkik 4kk k= ; l = 1, * ,N, 

where {X1, X2, *.. *, XN} are the eigenvalues of L in ascending order, and ik are the 
corresponding eigenvectors. Since L is symmetric, the latter form a complete system. 
Hence, we have [4]: 

N 

(19) L = E XkUktk 
k=l1 

N 

(20) 9 = Z 'Ykk, 
k=1 

and f becomes: 

(21) f E Xk 1k 
hk 

In the very difficult problems, in which most gradient sequences involve rapid 
oscillations of direction across a "ridge" with very little overall progress ("hem- 
stitching"), one may attribute this to the "ill-condition" of L in the absence of the 
appropriate choice of G. Eq. (14) indicates the very slow convergence one may ex- 
pect in this case if the minimum p should occur. For simplicity, we shall assume 
initially that Xi is positive but very much smaller than X2, X3, . . ., XN. Thus: 

(22) 0 < X1 << X2 < 3 < * - * < XNV 

(Under these circumstances, the ridge would be in the direction of ti.) 
Then, making the reasonable assumption that 1'ylI is not minute compared to 
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1 Y21, 1-y3l, etc., we have, for : 

(23) f (I/h)-yi'/Xi 
and also, 

(24) s - (1/h) (1/X1) 4i 

which shows that the Newton step direction is along the ridge, even if x is not 
situated exactly on the ridge. 

Now we shall move the initial point x roughly parallel to the ridge, away from 
the maximum. As we do this, the values of g and L will change. We may regard 
the (small) change in L as a perturbation on L, and examine the effect on its eigen- 
values and eigenvectors. Let the change be expressed by: 

(25) L = Lo + EM 

where M11 is of the same order of magnitude as Lo, and E is very small. The new 
eigenvalues and eigenvectors of L are denoted again by X and t. From first-order 
perturbation theory [5], we then have: 

(26) Xk = XOk + Xlk, 

(27) ik = tOk + ilk, 

with 

(28) Xlk = tOk M6 

(29) (lk = - x 0 Om? M(lk) 
m !k XOm - XOk 

These formulas show that the first-order changes in Xk and ik are of order E, 
provided that the eigenvalues are well separated. In particular: 

(30) X= M=01 

(31) tio = - Z tOm (tomM T01) (1 = tO1 + E211) 
m F,!1 XOm - Xoi 

where we note that Xoi is, by hypothesis, well separated from the other eigenvalues; 
hence, no denominator is small. 

We shall assume that the change in g is not such as accidentally to render -yi 
very much smaller than the other -y's. 

Let us now consider that x has been moved from its initial position (where 
yi > 0) sufficiently far from the domain of positive-definiteness of L, that the change 

in L (namely EM) is sufficient to have shifted Xi to being negative. However, since 
we assume a magnitude for the perturbation EM only sufficient to do this, and since 
Xi is very much smaller than all other X's we may reasonably suppose that for 
"ordinary" surfaces, all the other X's are still large and positive, as suggested by 
equation (26).* Hence, we may again approximate f as before: 

* It would be possible to prove these suppositions, if one placed suitable restrictions on M, 
etc., but these would be equivalent to corresponding restrictive assumptions about the class of 
surfaces being discussed. 



364 JOHN GREENSTADT 

(32) f (1/h)ayj/X 
compared with 

(23') fo (1/ho) (?y,/Xoi) 
the difference being that fo > 0, while f < 0. 

Further, the estimated step directions are: 

(33) s =(1h) (1/X ) 

as compared with 

(34) so = (1/ho) (1/Xol) toj. 

Now, since we have shown (Eq. (31)) that t, differs from t01 only by a small (vec- 
torial) amount, (33) and (34) show that the direction of the step has been sub- 
stantially reversed, even though it should not have been. 

This typical situation shows us, in effect, what may be done to repair the defect 
in Newton's method. We simply force all eigenvalues of L to be positive. The exact 
directional derivative (as given in Eq. (21)) then becomes: 

(35) 1 = I 
E |Xkl Yk 

which is clearly positive. 
This simple procedure for determining s, which has worked very well in practice 

[6] for extremely ill-conditioned problems, may be summarized as follows: 
(a) Analyze L into eigenvalues and eigenvectors (Jacobi's method was used in 

the practical computations). The result is Eq. (19). 
(b) Set all eigenvalues positive, and take for G the matrix L* defined by: 

(36) L* - Xk I k 
k 

(c) Calculate an unnormalized direction from: 

(37) s* = (L) lg -E | Sk ]7ktk 
k 

(d) Use an extrapolation-interpolation search procedure to find the point of 
maximum f along s*, since formula (16) no longer applies, even approximately. 

It can be worked out, for cubic f(x), that a small cubic term, acting as a pertur- 
bation on a quadratic, may easily disturb the maximum point only slightly, while 
inducing the change of step direction indicated above. This suggests that if one 
followed a direction s*, which was substantially the same as the undisturbed di- 
rection so, the search procedure referred to would lead to substantially the same 
gain in f. Since the gain in f by the steepest ascent method (G = I) would be, 
from equation (6) (in terms of Sk-coordinates): 

(38) AfsA = 2 Zk Yk 

Ek XkYk 
and since the Xk are perturbed very slightly, as shown before, the proportional 
change in (Af)SA would be negligible, regardless of the sign of X1. These arguments 
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indicate that the lower bound of relative efficiency given in Eq. (14) is still more 
or less in force, suggesting in turn, that the modified Newton method here sug- 
gested is also (very nearly) optimally efficient. 

The two major objections to this method are: 
(a) It is necessary to compute second derivatives. 
(b) It is necessary to do a complete eigenvalue-eigenvector analysis of L. 
These objections must be taken seriously, to the extent that the modified New- 

ton method might be rather inefficient (in the sense of computer time) in mildly 
ill-conditioned problems, as compared with a more straightforward gradient 
method. However, on the basis of the efficiency estimate in Eq. (14), if the value 
of 0 is, e.g., 104, it would have to take roughly 104 as much computation per step for 
the modified Newton method as for the simpler method to make the latter faster. 

This certainly suggests that Newton's method is worth considering in ill-con- 
ditioned cases, where a gradient method hemstitches badly. 

The method of Davidon [7], [8], appears to be a successful attempt to combine 
the best of both worlds, by constructing L from values of g at different points 
along the path to the maximum (or minimum). It should be noted, however, that 
in very ill-conditioned problems, an accurate direction s is quite critical, so that 
an approximation to L might not suffice for high efficiency. 

Appendix. We wish to maximize the directional derivative of f, viz., 

(A-1) fo (df/dh)h=o g s 

subject to: 

(A-2) sTGs= 1 

We use Lagrange's method of multipliers to form: 

(A-3) @ = g- (ST Gs - 1) 

and seek a stationary value of c1: 

(A-4a) &DlOs = g - 2XGs = 0, 

(A-4b) O./aX = S 1TGs- = 0. 

From (A-4a), we have: 

(A-5) s = G-lg/2X 

Substituting this into (A-4b), we obtain: 

(A-6) (gTG-1/2) )G(G-lg/2X) = gTG-1g/4X2 1 

so that 

(A-7) 2X = (g TG-g) 1/2 

Hence, 

( A-8 QG> -1, 
gl (T G-1g) 1/2 
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which coincides with Eq. (3). The foregoing analysis differs from that of Crockett 
and Chernoff somewhat, but the result is the same. The same applies to the re- 
marks to follow. 

The gradient g(x + hs) is given by: 

(A-9) g(x + hs) = g(x)-hhLs. 
If we denote the new value of g by g*, we may write: 

(A-10) 9* =g -hLs. 

Replacing s according to (A-8), we have: 

(A-11) 9 = - (h/(TG G19)1/2)ILG-g = (I - pLG-)gg 
where 

(A-12) p h/l(9r1 1/2 

While we are finding the maximum point iteratively, we are trying to make g 
vanish. We may thus think of (A-11) as an iterative formula: 

(A-13) gk+l = (I - pkLCP')gk Agk. 

From Schwarz' inequality, we have: 

(A-14) I j9ki+| ? < 11 - pkiLG-jj 1 9kI g k IA!! lg9k! 

and we hope that the norm of A is less than unity. 
As Crockett and Chernoff point out, if L and G are both symmetric positive 

definite, then LG-1 has positive eigenvalues {f3}, such that: 

(A-15) 0 < 01 < 02 < ' < ON. 

Thus, if we take for the norm of A the following: 

(A-16) VA= max 11 -Pki, 
1< i<N 

we wish to choose Pk so as to minimize VA. 

It can be shown that the correct value of Pk is: 

(A-17) pk= 2/(31 + ON) 

from which we obtain the Crockett and Chernoff result: 

(A-18) = 1 + Ii3/f3N 

This shows that the rate of convergence, which depends directly on PA, has a 
functional dependence on the condition number of LG-1. To maximize the rate of 
convergence, it is clear that G = L is the best choice. 
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